Sustainable Nanoparticles in Lubrication System: A Review of Eco-Friendly and Inorganic Additives

Toward Greener Tribology through Nano-Enhanced Lubricants

Authors

  • Amr Abdelazim Production Engineering and Mechanical Design, Faculty of Engineering, Minia University, El-Minia 61111, Egypt
  • Mohamed Taha Mechanical Engineering Department, College of Engineering and Technology, Arab Academy of Science, Technology and Maritime Transport, Sadat Road, Aswan P.O. Box 11, Egypt
  • Ahmed Rashed Production Engineering and Mechanical Design, Faculty of Engineering, Minia University, El-Minia 61111, Egypt
  • Ahmed Nabhan Production Engineering and Mechanical Design, Faculty of Engineering, Minia University, El-Minia 61111, Egypt
  • Ramzi Khiari Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France.

Keywords:

Lubricant Oil, Tribology, Viscosity, Eco-Friendly filler, Inorganic Additives

Abstract

The potential of nano-scale additions, such as titanium dioxide (TiO2), cellulose nanocrystals (CNC), and aluminium oxide (Al2O3), for strengthening lubricant efficiency is reviewed in this work. Despite a decreased level of wear, friction, and heat degradation, the nanoparticles strengthen tribological function. CNC is a bio-based, renewable substance that has excellent dispersion and green credentials. TiO2 and Al2O3 NPs promote a protective layer next generation and mechanical strength. Synergistic effects are demonstrated by hybrid CNC and inorganic nanoparticle combinations. Dispersion stability and practical implementation still present difficulties. All things considered, nano-additives offer a viable path toward lubricating systems that are both high-performing and environmentally friendly.

Downloads

Download data is not yet available.

References

. Bhushan, B. Tribology: Friction, Wear, and Lubrication. The engineering handbook 2000, 80–120.

. Czichos, H. Tribology: A Systems Approach to the Science and Technology of Friction, Lubrication, and Wear; Elsevier, 2009; Vol. 1; ISBN 0080875653.

. Pirro, D.M.; Webster, M.; Daschner, E. Lubrication Fundamentals, Revised and Expanded; CRC Press, 2017; ISBN 1315362058.

. Modi, A.J.; Gosai, D.C.; Gillawat, A. Impact of Nano-Fuel Additives and Nano-Lubricant Oil Additives on Diesel Engine Performance and Emission Characteristics. Journal of Heat and Mass Transfer Research 2024.

. Chen, Y.; Renner, P.; Liang, H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants 2019, 7, 7.

. Rana, M.S.; Sámano, V.; Ancheyta, J.; Diaz, J.A.I. A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel 2007, 86, 1216–1231.

. Ahmed, E.; Nabhan, A.; Ghazaly, N.M.; Abd El Jaber, G.T. Tribological Behavior of Adding Nano Oxides Materials to Lithium Grease: A Review. American Journal of Nanomaterials 2020, 8, 1–9.

. Nabhan, A. Vibration Analysis of Adding Contaminants Particles and Carbon Nanotubes to Lithium Grease of Ball Bearing. Vibroengineering Procedia 2016, 8, 28–32.

. Rapoport, L.; Leshchinsky, V.; Volovik, Y.; Lvovsky, M.; Nepomnyashchy, O.; Feldman, Y.; Popovitz-Biro, R.; Tenne, R. Modification of Contact Surfaces by Fullerene-like Solid Lubricant Nanoparticles. Surf Coat Technol 2003, 163, 405–412.

. Mang, T.; Dresel, W. Lubricants and Lubrication; John Wiley & Sons, 2007; ISBN 3527610332.

. Robertson, W.S. Types and Properties of Lubricants. In Lubrication in Practice; CRC Press, 2019; pp. 14–27.

. Erhan, S.Z.; Asadauskas, S. Lubricant Basestocks from Vegetable Oils. Ind Crops Prod 2000, 11, 277–282.

. Rudnick, L.R. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology; CRC press, 2020; ISBN 1351655744.

. Stepina, V.; Vesely, V. Lubricants and Special Fluids; Elsevier, 1992; Vol. 23; ISBN 0080875874.

. Bockisch, M. Fats and Oils Handbook (Nahrungsfette Und Öle); Elsevier, 2015; ISBN 0128043555.

. Speight, J.G.; Exall, D.I. Refining Used Lubricating Oils; CRC Press Boca Raton, 2014; Vol. 99.

. Vigdorovich, V.I.; Knyazeva, L.G.; Tsygankova, L.E.; Ostrikov, V. V; Petrashev, A.I. Properties of Petroleum and Synthetic Oils as Bases for Anticorrosion Materials. Chemistry and Technology of Fuels and Oils 2019, 55, 412–423.

. Benda, R.; Bullen, J.; Plomer, A. Synthetics Basics: Polyalphaolefins—Base Fluids for High‐performance Lubricants. Journal of Synthetic Lubrication 1996, 13, 41–57.

. Perrier, C.; Beroual, A. Experimental Investigations on Insulating Liquids for Power Transformers: Mineral, Ester, and Silicone Oils. IEEE Electrical Insulation Magazine 2009, 25, 6–13.

. O’Brien, J.A. Lubricating Oil Additives. CRC Handbook of Lubrication 1983, 2, 301–315.

. Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch Toxicol 2020, 94, 651–715.

. Kim, B.; Jiang, J.C.; Aswath, P.B. Mechanism of Wear at Extreme Load and Boundary Conditions with Ashless Anti-Wear Additives: Analysis of Wear Surfaces and Wear Debris. Wear 2011, 270, 181–194.

. Sidashenko, O.; Tikhonov, O.; Luzan, S.; Skoblo, T.; Pilgui, N.; Avetisian, V.; SAYCHUK, О.; Manilo, V. Repair Technology of Machinery and Equipment. Lecture course 2017.

. Farahani, M.D.; Zheng, Y. The Formulation, Development and Application of Oil Dispersants. J Mar Sci Eng 2022, 10, 425.

. Harsimran, S.; Santosh, K.; Rakesh, K. Overview of Corrosion and Its Control: A Critical Review. Proc. Eng. Sci 2021, 3, 13–24.

. Kenbeek, D.; Buenemann, T.; Rieffe, H. Review of Organic Friction Modifiers-Contribution to Fuel Efficiency?; SAE Technical Paper, 2000;

. Gropper, D.; Wang, L.; Harvey, T.J. Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings. Tribol Int 2016, 94, 509–529.

. Sander, D.E.; Allmaier, H.; Priebsch, H.-H. Friction and Wear in Automotive Journal Bearings Operating in Today’s Severe Conditions; IntechOpen Rijeke, Croatia, 2016;

. Lugt, P.M.; Morales-Espejel, G.E. A Review of Elasto-Hydrodynamic Lubrication Theory. Tribology transactions 2011, 54, 470–496.

. Patel, R.; Khan, Z.A.; Saeed, A.; Bakolas, V. A Review of Mixed Lubrication Modelling and Simulation. Tribology in Industry 2022, 44, 150–168.

. Lee, K.; Park, J.; Lee, J.; Kwon, S.W.; Choi, I.; Lee, M.G. Computational Framework for Predicting Friction Law under Mixed-Boundary Lubrication, and Its Application to Sheet Metal Forming Process. Tribol Int 2024, 199, 109941.

. Spikes, H.A.; Olver, A. V Basics of Mixed Lubrication. Lubrication science 2003, 16, 1–28.

. Briscoe, W.H.; Titmuss, S.; Tiberg, F.; Thomas, R.K.; McGillivray, D.J.; Klein, J. Boundary Lubrication under Water. Nature 2006, 444, 191–194.

. Liu, S.; Wang, Q.J.; Chung, Y.-W.; Berkebile, S. Lubrication–Contact Interface Conditions and Novel Mixed/Boundary Lubrication Modeling Methodology. Tribol Lett 2021, 69, 1–23.

. Verma, A.; Chandrawanshi, E. Carbon Nanomaterial-Based Friction Modifiers in Machines: Review of Recent Developments. Nanotechnol Percept 2024, 318–330.

. Wang, R.; Zhang, F.; Yang, K.; Xiao, N.; Tang, J.; Xiong, Y.; Zhang, G.; Duan, M.; Chen, H. Important Contributions of Carbon Materials in Tribology: From Lubrication Abilities to Wear Mechanisms. J Alloys Compd 2024, 173454.

. Taylor, R.I.; Sherrington, I. The Environmental and Economic Importance of Mixed and Boundary Friction. Lubricants 2024, 12, 152.

. Tonk, R. The Science and Technology of Using Nano-Materials in Engine Oil as a Lubricant Additives. Mater Today Proc 2021, 37, 3475–3479.

. Nabhan, A.; Ghazaly, N.M.; Mousa, H.M.; Rashed, A. Influence of TiO2 and SiO2 Nanoparticles Additives on the Engine Oil Tribological Properties: Experimental Study at Different Operating Conditions. International Journal of Advanced Science and Technology 2020, 29, 845–855.

. Ali, M.K.A.; Xianjun, H. Improving the Tribological Behavior of Internal Combustion Engines via the Addition of Nanoparticles to Engine Oils. Nanotechnol Rev 2015, 4, 347–358.

. Ali, Z.A.A.A.; Takhakh, A.M.; Al-Waily, M. A Review of Use of Nanoparticle Additives in Lubricants to Improve Its Tribological Properties. Mater Today Proc 2022, 52, 1442–1450.

. Ali, M.K.A.; Hou, X.; Abdelkareem, M.A.A. Anti-Wear Properties Evaluation of Frictional Sliding Interfaces in Automobile Engines Lubricated by Copper/Graphene Nanolubricants. Friction 2020, 8, 905–916.

. Vardhaman, B.S.A.; Amarnath, M.; Ramkumar, J.; Mondal, K. Enhanced Tribological Performances of Zinc Oxide/MWCNTs Hybrid Nanomaterials as the Effective Lubricant Additive in Engine Oil. Mater Chem Phys 2020, 253, 123447.

. Yang, L.; Mao, M.; Huang, J.; Ji, W. Enhancing the Thermal Conductivity of SAE 50 Engine Oil by Adding Zinc Oxide Nano-Powder: An Experimental Study. Powder Technol 2019, 356, 335–341.

. Twist, C.P.; Bassanetti, I.; Snow, M.; Delferro, M.; Bazzi, H.; Chung, Y.-W.; Marchió, L.; Marks, T.J.; Wang, Q.J. Silver-Organic Oil Additive for High-Temperature Applications. Tribol Lett 2013, 52, 261–269.

. Meng, Y.; Su, F.; Chen, Y. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-Decorated Graphene in Engine Oil Nanofluid. Sci Rep 2016, 6, 31246.

. Lee, J.; Cho, S.; Hwang, Y.; Cho, H.-J.; Lee, C.; Choi, Y.; Ku, B.-C.; Lee, H.; Lee, B.; Kim, D. Application of Fullerene-Added Nano-Oil for Lubrication Enhancement in Friction Surfaces. Tribol Int 2009, 42, 440–447.

. Sharuddin, M.H. bin; Sulaiman, M.H.; Kamaruddin, S.; Dahnel, A.H.; Abd Halim, N.F.H.; Ridzuan, M.J.M.; Abdul-Rani, A.M. Properties and Tribological Evaluation of Graphene and Fullerene Nanoparticles as Additives in Oil Lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2023, 237, 1647–1656.

. Alqahtani, B.; Hoziefa, W.; Abdel Moneam, H.M.; Hamoud, M.; Salunkhe, S.; Elshalakany, A.B.; Abdel-Mottaleb, M.; Davim, J.P. Tribological Performance and Rheological Properties of Engine Oil with Graphene Nano-Additives. Lubricants 2022, 10, 137.

. Rashed, A.; Nabhan, A. Effects of TiO2 and SiO2 Nano Additive to Engine Lubricant Oils on Tribological Properties at Different Temperatures. In Proceedings of the Proceedings of the 20th International Conference on Aerospace, Mechanical, Automotive and Materials Engineering, Rome, Italy; 2018; pp. 30–31.

. Atia, K.M.; El-Abden, S.; El-Sheikh, M.N.; Marzouk, W. An Investigation into A Conventional Spinning Process Combined with Flow Forming with Simultaneously Burnishing Processes. Journal of Advanced Engineering Trends 2021, 40, 97–107.

. Ali, M.K.A.; Xianjun, H. Exploring the Lubrication Mechanism of CeO2 Nanoparticles Dispersed in Engine Oil by Bis (2-Ethylhexyl) Phosphate as a Novel Antiwear Additive. Tribol Int 2022, 165, 107321.

. Sajeeb, A.; Rajendrakumar, P.K. Tribological Assessment of Vegetable Oil Based CeO2/CuO Hybrid Nano-Lubricant. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2020, 234, 1940–1956.

. Mousavi, S.B.; Heris, S.Z. Experimental Investigation of ZnO Nanoparticles Effects on Thermophysical and Tribological Properties of Diesel Oil. Int J Hydrogen Energy 2020, 45, 23603–23614.

. Elagouz, A.; Ali, M.K.A.; Xianjun, H.; Abdelkareem, M.A.A.; Hassan, M.A. Frictional Performance Evaluation of Sliding Surfaces Lubricated by Zinc-Oxide Nano-Additives. Surface Engineering 2020, 36, 144–157.

. Ali, M.K.A.; Fuming, P.; Younus, H.A.; Abdelkareem, M.A.A.; Essa, F.A.; Elagouz, A.; Xianjun, H. Fuel Economy in Gasoline Engines Using Al2O3/TiO2 Nanomaterials as Nanolubricant Additives. Appl Energy 2018, 211, 461–478.

. Nabhan, A.; Taha, M.; Ibrahim, A.M.M.; Ameer, A.K. Role of Hybrid Nanofiller GNPs/Al2O3 on Enhancing the Mechanical and Tribological Performance of HDPE Composite. Sci Rep 2023, 13.

. Nabhan, A.; Mousa, H.M.; Alfadhel, H.; El-Sharkawy, M.R.; Al-Shareef, H.F.; Al-Zahrani, F.A.M.; Taha, M. Comparative Performance Analysis of Gear Oil Enhanced With Biomass‐Derived Cellulose Nanocrystals and Al2O3 Nanoparticles. Int J Polym Sci 2025, 2025, 8850107.

. Nagarajan, T.; Sridewi, N.; Wong, W.P.; Walvekar, R.; Khanna, V.; Khalid, M. Synergistic Performance Evaluation of MoS2–HBN Hybrid Nanoparticles as a Tribological Additive in Diesel-Based Engine Oil. Sci Rep 2023, 13, 12559.

. Ziyamukhamedova, U.; Wasil, S.; Kumar, S.; Sehgal, R.; Wani, M.F.; Singh, C.S.; Tursunov, N.; Gupta, H.S. Investigating Friction and Antiwear Characteristics of Organic and Synthetic Oils Using H-BN Nanoparticle Additives: A Tribological Study. Lubricants 2024, 12, 27.

. Singh, H.; Bhowmick, H. Tribological Behaviour of Hybrid AMMC Sliding against Steel and Cast Iron under MWCNT-Oil Lubrication. Tribol Int 2018, 127, 509–519.

. Nabhan, A.; Rashed, A.; Taha, M.; Abouzeid, R.; Barhoum, A. Tribological Performance for Steel–Steel Contact Interfaces Using Hybrid MWCNTs/Al2O3 Nanoparticles as Oil-Based Additives in Engines. Fluids 2022, 7, 364.

. Kotia, A.; Ghosh, G.K.; Srivastava, I.; Deval, P.; Ghosh, S.K. Mechanism for Improvement of Friction/Wear by Using Al2O3 and SiO2/Gear Oil Nanolubricants. J Alloys Compd 2019, 782, 592–599.

. Patil, H.H.; Sangli, D. Tribological Properties of SiO2 Nanoparticles Added in SN-500 Base Oil. International Journal of Engineering Research & Technology (IJERT) 2013, 2, 763–768.

. Meshref A, A.; AA, M.; MA, E.-G.; WY, A. Wear Behavior of Hybrid Composite Reinforced with Titanium Dioxide Nanoparticles. Journal of Advanced Engineering Trends 2020, 39, 89–101.

. Ali, M.K.A.; Xianjun, H.; Abdelkareem, M.A.A.; Gulzar, M.; Elsheikh, A.H. Novel Approach of the Graphene Nanolubricant for Energy Saving via Anti-Friction/Wear in Automobile Engines. Tribol Int 2018, 124, 209–229.

. Martínez, A.; Tenorio, F.J.; Ortiz, J. V Al3O4 and Al3O4-Clusters: Structure, Bonding, and Electron Binding Energies. J Phys Chem A 2003, 107, 2589–2595.

. Azman, N.F.; Samion, S. Dispersion Stability and Lubrication Mechanism of Nanolubricants: A Review. International journal of precision engineering and manufacturing-green technology 2019, 6, 393–414.

. Taghizadeh, B.; Zarepour, H. The Effect of Al2O3-MWCNT Hybrid Nanofluid on Surface Quality in Grinding of Inconel 600. Journal of Modern Processes in Manufacturing and Production 2018, 7, 71–82.

. Luo, T.; Wei, X.; Huang, X.; Huang, L.; Yang, F. Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives. Ceram Int 2014, 40, 7143–7149.

. Ghalme, S.; Koinkar, P.; Bhalerao, Y.J. Effect of Aluminium Oxide (Al2O3) Nanoparticles Addition into Lubricating Oil on Tribological Performance. Tribology in industry 2020, 42, 494–502.

. Nabhan, A.; Rashed, A.; Ghazaly, N.M.; Abdo, J.; Haneef, M.D. Tribological Properties of Al2O3 Nanoparticles as Lithium Grease Additives. Lubricants 2021, 9, 9.

. Luo, T.; Wei, X.; Zhao, H.; Cai, G.; Zheng, X. Tribology Properties of Al2O3/TiO2 Nanocomposites as Lubricant Additives. Ceram Int 2014, 40, 10103–10109.

. Suthar, K.; Singh, Y.; Surana, A.R.; Rajubhai, V.H.; Sharma, A. Experimental Evaluation of the Friction and Wear of Jojoba Oil with Aluminium Oxide (Al2O3) Nanoparticles as an Additive. Mater Today Proc 2020, 25, 699–703.

. Abdullah, M.I.H.C.; Abdollah, M.F.; Amiruddin, H.; Tamaldin, N.; Nuri, N.R.M. Effect of HBN/Al2O3 Nanoparticle Additives on the Tribological Performance of Engine Oil. J Teknol 2014, 66.

. López, T.D.-F.; González, A.F.; Del Reguero, Á.; Matos, M.; Díaz-García, M.E.; Badía-Laíño, R. Engineered Silica Nanoparticles as Additives in Lubricant Oils. Sci Technol Adv Mater 2015, 16, 055005.

. Kotia, A.; Ghosh, S.K. Experimental Analysis for Rheological Properties of Aluminium Oxide (Al2O3)/Gear Oil (SAE EP-90) Nanolubricant Used in HEMM. Industrial Lubrication and Tribology 2015, 67, 600–605.

. Taha, M.; Mousa, H.M.; Alfadhel, H.; Nasr, E.A.; Elbatran, A.H.A.; Nabhan, A.; El-Sharkawy, M.R. Utilizing Cellulose Nanofibers to Enhance Spent Engine Oil Performance: A Sustainable Environmental Solution. Results in Engineering 2024, 102395.

. Bakrey, M.; Nabhan, A.; Ameer, A.K.; El-Sharkawy, M.R. Performance of Lithium-Based Grease Filled with Hybrid Paraffin Oil and TiO2 Nanoparticles for Vehicle Applications. International Journal of Vehicle Structures & Systems 2023, 15, 540–546.

. Mariño, F.; del Río, J.M.L.; Gonçalves, D.E.P.; Seabra, J.H.O.; López, E.R.; Fernández, J. Effect of the Addition of Coated SiO2 Nanoparticles on the Tribological Behavior of a Low-Viscosity Polyalphaolefin Base Oil. Wear 2023, 530, 205025.

. Liñeira del Río, J.M.; Guimarey, M.J.G.; Somoza, V.; Mariño, F.; Comuñas, M.J.P. Tribological Performance of a Paraffinic Base Oil Additive with Coated and Uncoated SiO2 Nanoparticles. Materials 2024, 17, 1993.

. Patil, H.H.; Sangli, D. Tribological Properties of SiO2 Nanoparticles Added in SN-500 Base Oil. International Journal of Engineering Research & Technology (IJERT) 2013, 2, 763–768.

. Cortes, V.; Sanchez, K.; Gonzalez, R.; Alcoutlabi, M.; Ortega, J.A. The Performance of SiO2 and TiO2 Nanoparticles as Lubricant Additives in Sunflower Oil. Lubricants 2020, 8, 10.

. Zhang, Y.; Wei, L.; Hu, H.; Zhao, Z.; Huang, Z.; Huang, A.; Shen, F.; Liang, J.; Qin, Y. Tribological Properties of Nano Cellulose Fatty Acid Esters as Ecofriendly and Effective Lubricant Additives. Cellulose 2018, 25, 3091–3103.

. Li, J.; Lin, N.; Du, C.; Ge, Y.; Amann, T.; Feng, H.; Yuan, C.; Li, K. Tribological Behavior of Cellulose Nanocrystal as an Eco-Friendly Additive in Lithium-Based Greases. Carbohydr Polym 2022, 290, 119478.

. El-Wakil, N.; Taha, M.; Abouzeid, R.; Dufresne, A. Dissolution and Regeneration of Cellulose from N-Methylmorpholine N-Oxide and Fabrication of Nanofibrillated Cellulose. Biomass Convers Biorefin 2024, 14, 5399–5410.

. El-Abden, S.Z. TUBE-TO-SHEET JOINTS OF DISSIMILAR MATERIALS USING COMBINED PLASTIC DEFORMATION PROCESS IN SINGLE PASS. Journal of Advanced Engineering Trends 2021, 40, 109–128.

. Zakani, B.; Salem, H.; Entezami, S.; Sedaghat, A.; Grecov, D. Effect of Particle Concentration on Lubrication Performance of Cellulose Nanocrystalline (CNC) Water-Based Lubricants: Mixed Lubrication Regime. Cellulose 2022, 29, 3963–3984.

. Zakani, B.; Entezami, S.; Grecov, D.; Salem, H.; Sedaghat, A. Effect of Ultrasonication on Lubrication Performance of Cellulose Nano-Crystalline (CNC) Suspensions as Green Lubricants. Carbohydr Polym 2022, 282, 119084.

. Liu, Z.; Zhu, G.; Dai, J.; Zhu, Y.; Lin, N. Cellulose Nanocrystals as Sustainable Additives in Water-Based Cutting Fluids. Carbohydr Polym 2022, 298, 120139.

. Li, K.; Zhang, X.; Du, C.; Yang, J.; Wu, B.; Guo, Z.; Dong, C.; Lin, N.; Yuan, C. Friction Reduction and Viscosity Modification of Cellulose Nanocrystals as Biolubricant Additives in Polyalphaolefin Oil. Carbohydr Polym 2019, 220, 228–235.

. Awang, N.W.; Ramasamy, D.; Kadirgama, K.; Najafi, G.; Sidik, N.A.C. Study on Friction and Wear of Cellulose Nanocrystal (CNC) Nanoparticle as Lubricating Additive in Engine Oil. Int J Heat Mass Transf 2019, 131, 1196–1204.

. Awang, N.W.; Ramasamy, D.; Kadirgama, K.; Samykano, M.; Najafi, G.; Sidik, N.A.C. An Experimental Study on Characterization and Properties of Nano Lubricant Containing Cellulose Nanocrystal (CNC). Int J Heat Mass Transf 2019, 130, 1163–1169.

Downloads

Published

2025-10-04

How to Cite

Abdelazim, A. ., Taha, M., Rashed, A. ., Nabhan, A. ., & Khiari, R. (2025). Sustainable Nanoparticles in Lubrication System: A Review of Eco-Friendly and Inorganic Additives: Toward Greener Tribology through Nano-Enhanced Lubricants. Journal of the Algerian Chemical Society, 1(02), 36–56. Retrieved from https://jacs-dz.org/index.php/jacs/article/view/424

Issue

Section

Review