STRUCTURAL AND PHOTOLUMINESCENCE PROPERTIES OF EU3+ DOPED (GD1-XLUX)3AL5O12 SYNTHESIZED BY SOLID STATE REACTION
Abstract
The (Gd1-xLux)3Al5O12 garnet compounds doped with 5% Eu3+ were synthesized using the solid-state reaction method calcined at 1450°C. Despite the stabilization of the phase Gd3Al5O12 by lutetium and doped europium, XRD structural analysis revealed the presence of secondary phases, including sesquioxide (R: Ln2O3), monoclinic garnet (M: Ln4Al2O9), and perovskite (P: LnAlO3) as major phase, accompanied the cubic garnet (G: Ln3Al5O12) phase. FTIR results confirmed the structure of the samples identified the characteristic bands of all observed phases. The energy transfers of Gd3+ enhance the luminescence of Eu3+activator ions. Photoluminescence analysis indicated that Eu3+ improves structural symmetry within the luminescent host materials. Under excitation at 360 nm, the non-centrosymmetric phases R, M and P were identified by the dominance of electric dipole 5D0 to 7F2 transitions. In contrast, the emission from centrosymmetric cubic garnet doped with Eu3+ presents by the magnetic dipole 5D0 to 7F1 dominant transition.
Downloads
References
Marlot, C.; Barraud, E.; Le, S.; Eichhon, M. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms. J. Solid State Chem. 2012, 191,114-120.
Li, J.; Li, J.G.; Zhang, Z.; Wu, X.; Liu, S.; Li, X., Sun, X.; Sakka, Y. Gadolinium Aluminate Garnet (Gd3Al5O12): Crystal Structure Stabilization via Lutetium Doping and Properties of the (Gd 1− x Lu x) 3 Al5O12 Solid Solutions (x= 0–0.5). J. Am. Ceram. Soc. 2012, 95, 931-936.
Li, J.; Li, J.G.; Li, J.; Liu, S.; Li, X., Sun, X.; Sakka, Y. Development of Eu3+ activated monoclinic, perovskite, and garnet compounds in the Gd2O3–Al2O3 phase diagram as efficient red-emitting phosphors. J. Solid State Chem. 2013, 206,104-112.
Lanez,I.; Rekik,B.; Kezzim,A.; Derbal,M.; Lanez,T.; Lebbou,K. ; Structural and vibrational properties of (Gd0.7Lu0.3)3Al5O12 cubic garnet synthesized with different aluminum sources via co precipitation method. Bull Material Sci. 2024, 47, 31-94.
Lanez, I., Rekik; B.; Derbal, M.; Chaib, A. Structural study and the effect of ionic size of the systems (Gd1-x Lux) 3Al5 O12 doped erbium. J. Fundam. Appl. Sci. 2019, 11, 857-874.
Li, J.; Li, J.G.; Sakka, Y.; Investigation of new red phosphors of Eu3+ activated (Gd, Lu) 3Al5O12 Garnet. Inter. J. Mat. Sci. Eng. 2013, 1, 15-19.
Li, J.; Li, J.G.; Zhang, Z.; Wu, X.; Liu, S.; Li, X., Sun, X.; Sakka, Y. Effective lattice stabilization of gadolinium aluminate garnet (GdAG) via Lu3+ doping and development of highly efficient (Gd, Lu) AG: Eu3+ red phosphors. Sci. Technol. Adv. Mater. 2012,13.
Binnemans, K.; Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1-45.
Li, J.G.; Li, J.; Zhu, Q.; Wang.; Li, X., Sun, X.; Sakka, Y. Photoluminescent and cathodoluminescent performances of Tb 3+ in Lu 3+-stabilized gadolinium aluminate garnet solid-solutions of [(Gd 1− x Lu x) 1− y Tb y] 3 Al 5 O 12. RSC Advances. 2015, 73, 59686-59695.
Li, J.G.; and Sakka, Y.; Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Sci. Tec. Adv. Mat. 2015, 16, 014902.
Papagelis, K.; Ves, S. Vibrational properties of the rare earth aluminum garnets. J. Appl. Phys. 2003, 10, 6491-6498.
Boukerika, A.; Guerbous, L. Effect of Y3+ substitution on structural and photoluminescence properties of solid solutions [(Lu1− xYx) 1− z Cez] 3Al5O12 phosphors. Mater. Chem. Phys. 2016, 394-399.
Praveena, R.; Shim, J.J.; Cai, P.; Seo, H.J.; Chung, W.Y.; Kwon, T.H.; Jayasankar, C.P.; Haritha, P. Venkatramu, V. Luminescence properties of Lu 3 Al 5 O 12: Tb 3+ nano-garnet. J. Korean Phys. Soc. 2014, 64, 1859-1865.
Oliveira, D.S.; Henrique, H.; Cebim, M. A.; da Silva, A. A.; Davolos, M. R. Structural and Spectroscopic Studies of Pr3+-Doped GdAlO3. IEEE Trans. Nucl. Sci.2010, 57, 1260-1263.
Cizauskaite, S.; Reichlová, V.; Nenartaviciene, G.; Beganskiene, A.; Pinkas, J.; Kareiva, A.
Sol–gel preparation and characterization of gadolinium aluminate. Mater. Chem. Phys. 2007, 102, 105-110.
Girish, H. N.; Vijaya Kumar, M. S.; Byrappa, K.; Basavalingu, B. Hydrothermal synthesis of some of lanthanide aluminum perovskites–LnAlO3 (Ln= La, Sm and Gd). Mater. Res. Innovations. 2015, 19, 270-274.
Saji, S. K.; Vinodkumar, R.; Eappen, S. M.; Wariar, P. Optical and dielectric characterization of gadolinium aluminate ceramic nanoparticles synthesized by combustion technique. Mater. Chem. Phys.2017, 189-195.
Dhananjaya, N.; Nagabhushana, H.; Nagabhushana B., M.; Chakradhar R., P., S.; Shivkumara, C.; Rudraswamy, C. Synthesis, characterization and photoluminescence properties of Gd2O3: Eu3+ nanophosphors prepared by solution combustion method, Physica B: Condenser Matter. 2010, 17, 3795-3799.
Dubnikova, N.; Garskaite, E.; Pinkas, J.; Bezdicka, P.; Beganskiene, A.; Kareiva, A. Sol–gel preparation of selected lanthanide aluminum garnets. J. Sol-Gel Sci. Technol. 2010, 213-219.
Tamrakar, R.K.; Bisen, D.B.; Nameeta Brahme, N. "Effect of Yb3+ concentration on photoluminescence properties of cubic Gd2O3 phosphor. Infrared Physics & Technology. 2015, 92-97.
Xia, G.; Zhou, S.; Zhang, J.; Wang, S.; Wang, H.; Xu, J. Sol–gel combustion synthesis and luminescence of Y4Al2O9: Eu3+ nanocrystal. J. Non-Cryst. Solids. 2005, 37-39, 2979-2982.
Zhang, Y.; Yu, H. Synthesis of YAG powders by the co-precipitation method. Ceram. Int. 2009, 5, 2077-2081.
Guo, H.; Yin, M.; Dong, N.; Xu, M.; Lou, L.; Zhang, W. Effect of heat-treatment temperature on the luminescent properties of Lu2O3: Eu film prepared by Pechini sol–gel method. Appl. Surf. Sci. 2005, 1-4, 245-250.
Rekik, B.; Alombert-Goget, G.; Berthelot, A.; Benamara, O.; Lebbou, K. Optical properties of 2 at%(Ln3+) doped LiGd (WO4) 2 with Ln; Eu, Er and Tm, grown by μ-pulling down technique. J. Alloys Compd. 2020, 154165.
Som, S.; Sharma, S. K.; and Lochab, S. P. Swift heavy ion induced structural and optical properties of Y2O3: Eu3+ nanophosphor. Mater. Res. Bull. 2013, 2, 844-851.
Yamaguchi, O.; Takeoka, K.; Hirota, K.; Takano, H.; Hayashida, A. Formation of alkoxy-derived yttrium aluminum oxides. J. Mater. Sci.1992, 1261-1264.
Chen, Q.; Li, J. Wang, W. Synthesis and luminescence properties of Tb3+/Eu3+ co-doped GdAlO3 phosphors with enhanced red emission. J. Rare Earths. 2018, 9, 924-930.
Oliveira, H. H. S.; Cebim, M. A.; Da Silva, A. A.; Davolos, M. R. Structural and optical properties of GdAlO3: RE3+ (RE= Eu or Tb) prepared by the Pechini method for application as X-ray phosphors. J. Alloys Compd. 2009, 2, 619-623.
Muresan, L. E.; Popovici, E. J.; Perhaita, I.; Indrea, E.; Silipas, T. D. Effect of the europium doping on the structural and luminescent properties of yttrium aluminum garnet. Mater. Sci. Eng: B. 2013, 4, 248-253.
Boukerika, A.; Guerbous, L.; Chelef, H.; Benharrat, L. Preparation and characterization of bright high quality YAG: Eu3+ thin films grown by sol–gel dip-coating technique. Thin solid films. 2019, 74-81.
Vondrášková, A.; Beitlerova, A.; Barta, J.; Čuba, V.; Mihokova, E.; Nikl, M. Nanocrystalline Eu-doped Lu3Al5O12 phosphor prepared by radiation method. Opt. Mater. 2015, 102-106.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of the Algerian Chemical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.